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ABSTRACT

The buckling characteristics of a titanium matrix composite hat-stiffened panel were experimentally
examined for various combinations of thermal and mechanical loads. Panel failure was prevented by

maintaining the applied loads below real-time critical buckling predictions. The test techniques used
to apply the loads, minimize boundary effects, and predict the panel response at high temperatures are

presented. Experimentally predicated buckling loads have been shown to compare well with a finite-

element buckling analysis for previous panels. Comparisons between test predictions and analysis for
this panel are ongoing.

NOMENCLATURE

A1

D

DACS

F

F/S
NASP

T

TMC

V

aluminum

bending strain, microstrain

Data Acquisition and Control System

applied compression load, lb

force/stiffness

National Aero-Space Plane

temperature, °F

titanium matrix composite

vanadium

INTRODUCTION

Advances in hypersonic vehicle technology have led to the design and fabrication of potential

National Aero-Space Plane (NASP) fuselage and wing panel structural subcomponents. A hat-stiffened

panel is one subcomponent that has been fabricated into two test articles. The first test article was made

from monolithic titanium and the other test article was made from titanium matrix composite (TMC).

These panels are designed to carry loads both parallel and perpendicular to the hat stiffeners; therefore,

the buckling characteristics are critical to their design. Determining these characteristics under a variety
of thermal-mechanical test configurations, while maintaining panel integrity, has requited the use of
innovative test techniques.

Personnel at the National Aeronautics and Space Administration (NASA) Dryden Flight Research

Facility (DFRF), in a cooperative effort with the McDonnell Douglas Corp., have completed a thermal-

mechanical test program on a monolithic Ti 6A1-4V hat-stiffened panel. This panel was nondestructively
tested to 500 °F to examine its buckling characteristics and to validate analytical tools [1]. The test

techniques developed to test the monolithic panel recently have been used to test the TMC panel at 500

and 1200 °F in similar thermal-mechanicai loading configurations.

Described in this paper axe: (1) the test techniques developed to apply the thermal-mechanical

loads and minimize boundary effects and (2) the application of a single-strain-gage force/stiffness (F/S)



buckling prediction technique [2] to the TMC panel. The results contained in this paper show typical
experimental data and will not cover every test configuration. In some cases the trends of the results

and not the magnitudes are presented because of applicable International Traffic in Arms Regulations
0TAR) restrictions.
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TEST DESCRIPTION

Test Article

The test article investigated recently is a TMC hat-stiffened panel representative of a fuselage or

wing skin panel of a future hypersonic vehicle (the NASP). The panel meas_s no_minally 24 in.
square and 1.25 in. thick (including the height of the hat stiffeners) with eight hat stiffeners attached

by spot welds to a flat skin (Fig. 1). L-shaped and T-shaped frames are bolted to all four sides

of the panel to produce a load frame. The panel is designed to carry loads parallel (axially) and

perpendicular (cross corrugation) to the hat stiffeners and is therefore buckling critical in the axial and

cross-corrugation directions.
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(a) Skin-side. (b) Hat-side.

Figure 1. TMC hat-stiffened panel.

Instrumentation

The TMC panel was insmumented extensively with 322 sensors to obtain thorough measurements

for validating finite-element buckling models and monitoring real-time panel integrity. The instrumen-

tation included 120 Micro-Measurement (Raleigh, North Carolina) foil strain gages (WK-06-125-AD-

350); 14 Micro Engineering II (Upland, California) high-temperature foil strain gages (NZ-2104-120-L);

9 Eaton (El Scgundo, California) weldable strain gages (MG425); 3 Battelle (Columbus, Ohio) high-

temperature frec filament wire strain gages (BCL-3); 164 Incon¢l ® sheathed type K (Chromel-Alumcl,

Hoskins Manufacturing Co., Hamburg, Michigan) thermocouples, and 12 deflection potentiometers.

Figure 2(a) shows instrumentation on the skin-side of the panel. Strain gages were positioned in the

axial and cross-corrugation directions and were distdbutM over the panel to provide an overall under-

standing of the panel behavior. The deflection potentiometer attachment points were evenly distributed

on the skin-side of the panel between hat-stiffener legs to measure out-of-plane deformations. The

potentiomcters were attached to the panel through holes in the high-temperature oven by quartz glass

rods to minimize thermal expansion errors. Figure 2(b) is a photograph of the hat-stiffened side of the

panel. Strain gages were positioned in-line with the hats and were located on the cap and legs of the

hat stiffeners. Thermocouples were distributed on both sicks of the panel and on the loading frames to

measure panel temperatures. To promote uniform temperature distributions the panel was painted with

high-emissivity paint capable of withstanding the elevated test temperatures.

@Inconcl is a registered trademark of Huntington Alloy Products Division, International Nickel Co., Huntington, West
Virginia.
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(a) Skin-si_.

EC90 12-18

EC89 342-1

(b) Hat-side.

Figure 2. TMC hat-stiffened panel instrumentation.
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Data Acquisition and Control

Data acquisition and adaptive thermal control were accomplished by using the Data Acquisition

and Control System (DACS) at the NASA DFRF Thermostructures Research Facility [3]. The primary

function of the DACS is to conduct real-time thermal and mechanical simulation of flight environments

on test articles and aircraft. The system is capable of recording 1280 channels of data which includes

up to 512 thermal closed-loop and 64 mechanical open-loop control channels. The DACS controls

temperature and power level. Temperature can be controlled in the -320 to 2500 °F range, with research

ongoing to control to 3000 °F. The maximum DACS firing level is 3600 quartz lamp pulses each minute,

with total available power of 20 MW. The system also provides real-time visual data analysis displays

such as :r-l/plots, thermal control deviation displays, alphanumeric displays, and single- and dual-strain-

gage F/S displays. The DACS maximum allowable system measurement error is +0.15 percent of

reading or +20 #V, whichever is greater. Therefore, for a +20 pV strain measurement input from

a single active arm strain gage with a 4-V direct current (DC) excitation voltage, the error band is

+8 #infm. However, this error is reduced with additional active arms and higher excitation voltages.

Similarly, a type K thermocouple measurement error with a +20 #V input is equivalent to +0.9 °F.

Test Setup

Compressive loads were applied to the panel in a 220-kip uniaxial load frame system (Fig. 3). This

system consists of a lower hydraulic loading ram and load platen, an upper movable ram and platen that

is locked into position while load is applied, and a chain-mail screen to prevent injury in the event of

test article failure. A 220-kip load cell was placed between the upper ram and platen and was thermally

insulated from the oven to reduce the risk of any temperature-induced errors. Open-loop mechanical

control was provided by a digital function generator manned by test support personnel. The load cell

has a precision of 0.1 percent of reading while the DACS has a precision of + 1 count or approximately

+50 lb. Therefore a load cell reading of 50,000 lb is precise to -4-100 lb.

5



EC89 38-1

Figure 3. 220-kip load frame system.

The test setup was designed to maintain uniform temperatures on the panel during the application

of compressive mechanical loads. Controlling the panel boundary temperature was essential to produce

realistic and uniform flight loads and simplify the finite-element analysis of the panel. Satisfying these

requirements was difficult because of the significant interaction betw_n the thermal and mechanical

loads. If conventional load frame hardware were used to apply compressive loads the massive load

platens would _ate heat sinks at the panel boundaries. Likewise, heat conduction to the load platen

would cause the platen to warp and introduce nonuniform mechanical loads into the panel. Therefore, a

system of heated and cooled platens (Fig. 4) was used to apply uniform thermal and mechanical loads

simultaneously. The platen shown supporting the vertically positioned panel was internally heated with

13 cartridge heaters spaced 2 in. apart and oriented perpendicular to the prominent axis of the platen.

Power to the cartridge heaters was controlled manually by a power control unit to achieve the desired

platen temperature time history. The 1-in.-thick heated platen was fabricated from Ti 6A1-4V to avoid

inducing thermal stresses in the panel caused by differences in the coefficients of thermal expansion

between the panel and platens. Insulated water-cooled platens maintained at room temperature were

used to prevent heat conduction to the testing machine and load cell. A 0.25-in.-thick layer of semirigid

insulation was placed between the heated platen and the 3-in.-thick water-cooled steel platen. The water

manifolds shown in this figure were used to route water through 13 coolant passages in the cooled platen.

6 ORIGINAL PAGE
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Figure 4. Load platen design.

The ceramic box oven shown in Fig. 5(a) was used to heat the panel to 500 and 1200 °F. The
oven consists of a 0.125-in.-thick aluminum sheet box lined with 1.5-in.-thick ceramic block insulation

attached with high-temperature adhesive. Forty-eight quartz lamps (24 on each side) were spaced 1-in.

apart and aligned horizontally on both sides of the oven (Fig. 5(t))). The 41.8-in.-long lamps extended

approximately 6 in. past each side of the panel to provide a more uniform heat flux across the panel. The

48 quartz lamps were divided into 8 independent thermal closed-loop control zones (4 on each side).

Thermocouples located on both sides of the panel were used as feedback to adaptively adjust the lamp

power to achieve the desired heating rate. Ceramic fences (not shown) were placed between each of the

control zones to minimize heat convection losses from the top of the oven. The oven was suspended

from the load frame upper movable ram to permit easy access to the panel and instrumentation before

and after testing. Figure 5(b) shows the oven lowered into position around the panel and also shows

the potentiometer quartz rods attached to the panel to make out-of-plane deflection measurements.

n; ._,J_,_-_LPAGE'.
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(a) Outer view. (b)Innerview.

Figure5. Radiantheatingoven design.

TEST APPROACH

Measurements

Temperature,out-of-planedeflection,and strainmeasurementswere made on theTMC panelusing

theinstrumentationdescribedpreviously.Thermocoupleand deflectionpotentiometermeasurementsarc

adequatelystandardizedfortheenvironmentappliedtotheTMC panel.However, straingages thatarc

used atelevatedtemperaturesmust be characterizedfor thermaloutputor apparentstrain.Apparent

strain characteristics are different for each type of swain gage and therefore require different apparent

strain test tech_ques for each type of gage: bonded foil, high-temperature foil, high-temperature wire,
or weldable. Apparent strain test techniques for each of these types of strain gages are discussed in
Ref. [4].

Buckling Prediction Technique

A single-strain-gageF/S technique,an adaptationof theF/S techniquedevelopedby Jones and

Green [5],was used to predictpanelbucklingloads[I].This method was necessarybecauseinstru-

menting thehat-stiffenedpanelswithback-to-backstraingageswould have tooccurbeforefabrication.

Sincetheback-to-backstraingages couldnot survivethefabricationprocessa singlestraingage was

used todeterminethelocalbendingstrain.The single-swain-gagemethod dividesthegage outputinto

8
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two parts:a linearand norflinearresponse. Figure 6(a)shows the typicalresponse of a straingage to

load under uniaxialcompression in a buckling situation.The gage responds linearlyup to a load where

bending is introduced,afterthatpoint itresponds nonlincarly.The single-strain-gagemethod uses the

linearresponse of the gage to determine the bending strainduring the nonlinearresponse portion.By

fittinga straightlinethrough the linearportion,an extrapolationbeyond the bending introductionpoint

can be made. The assumption is thatifthe gage would continue to respond linearlywith load, the

output of the gage would follow the dashed line.The extrapolationbeyond the bending introduction

point enables the bending strainto be computed as the differencebetween the measured strainand the

strainfrom the linearextrapolation.The bending straincan then be used in the F/S plot.

Strain

Measured strain
- - - Linear extrapolation

%
%

%
%

%

Bendlng
_raln (D)

%,
%

%
%

ICornpresslon loadl, (F) o1_o_,

(a) Typical strain output as a function of load.

Figure 6. Single-strain-gage F/S method of predicting local buckling loads.

Figure 6(b) is a typical F/S plot in which F/D is plotted as a function of F where F represents the

compressive load and D the bending strain found in Fig. 6(a). The curve moves downward to the fight

as the critical buckling load is approached. By selecting a linear-fitted range near the bottom portion of

the F/S curve, a line can be extrapolated down to the load axis to predict the buckling failure load. The

fitted range is usually the lower portion of the F/S curve and is based upon judgement, experience, and

upon the assumption that no load path or mode changes will occur before the intersection. In this paper,

the prediction is of the first mode elastic buckling load, which is considered the critical buckling load.



F
w

D

_ Measured strain

i/ .... Linear extrapolation

..... Bending Introduction

\ Linear fitted range

mdi ea

ICompresslon load[, (F)
911015

(b) TypicalF/S plot.

Figure 6. Concluded.

A real-timesingle-strain-gageF/S evaluationwas conducted to examine the TMC panel integrity

during thermal-mechanical testing.Software was developed on the DACS and on Sun SPARCstations

(Sun Microsystems Inc.,Mountain View, California)for a real-timedisplay of the F/S method. An

iterativeincrementalload applicationprocedure utilizingthe single-strain-gagemethod was developed.

This procedure allows the panel to be testedclose to criticalbuckling loads.

Procedures

The TMC panel was subjectedto a seriesof nondestructivecombined thermal equilibriumand me-

chanicalloads.First,thepanel was mechanically loaded atroom temperatureand atelevatedequilibrium

temperatures in the cross-corrugation mode with and without water-cooled frames. These water-cooled

frames were used to apply an in-plane thermal gradient across the panel. Next, the panel was mechani-

cally loaded at room temperatm'e and at elevated equilibrium temperatures in the axial mode. The panel

was also held at constant loads in the cross-corrugationmode while an elevatedequilibriumtempera-

tureprofilewas applied. An extensive testmatrix was followed to provide testdata for a varietyof

testconfigurations.

Load alignment was considered criticalto prevent eccentricloading and to cream a uniform load

distribution.Alignment was monitored in realtime by checking straingage outputs on skin-sidecross

sectionsnear the top,bottom, and centerof the panel. Load alignment was then optimized by securing

the panel in guides attached to the platensand by shimming the top and bottom edges of the panel.

v
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Thermal and mechanical load profiles were applied to the panel using the DACS for closed-loop
oven control and manual control for the heated platens and load frame. Figure 7 shows a schematic of

the thermal-mechanical loading procedure for an elevated temperature test. First, the panel was seated
by applying a mechanical preload (1). Then the platen heating was started before the oven heating
because of the platen mass and inherent thermal inertia (2). When the temperature of the heated platens
reached 30 to 40 °F above the panel temperature the closed-loop temperature control on the panel
was started (3). The panel and platens were then held at constant temperatures at 100 °F increments

for several minutes to obtain uniform panel temperatures (4). Once the panel and platens reached a
uniform equilibrium temperature of 500 °F the mechanical loading began (5). Load was applied in
small increments to obtain a linear range for the single-strain-gage F/S method (6). Load was then

held constant to allow time to enact the real-time single-strain-gage F/S software (7). Finally, loading
continued until it was determined from the real-time single-strain-gage F/8 plots to be the maximum

possible load while maintaining panel integrity (8).

11
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Figure 7. Thermal and mechanical loading procedures.

RESULTS AND DISCUSSION

Experience with testing the Ti 6AI_V monolithic panel has shown that the most detailed of the

finite-element models used to analyze the panel will not provide good correlation between measured and

predicted strains unless the temperature field is defined accurately [1]. Therefore, of particular interest

in these tests, as in all elevated-temperature structural testing, is well-defined temperature distributions.

12



Figure 8 shows a combined surface and contour plot of a temperature distribution at 515 °F over the

skin-side of the TMC panel oriented with load applied perpendicular (cross corrugation) to the hat

stiffeners. The deviation from a uniform temperature distribution of 515 °F is +5 to -60 °F with the

bottom comers of the panel exhibiting the largest deviation.

525

510

495

48O
T,
°F 465

450

435

420

525

510

495

48O

465

450

TI

OF

911017

Figure 8. Skin-side temperature distribution at 515 °F with panel in the cross-corrugation mode.

Two of the test requirements for the TMC panel were to load the panel in the axial and cross-

corrugation directions and to obtain thorough temperature and strain measurements. These requirements

led to a large amount of instrumentation wiring that needed to be routed off the panel in the corners.

Thermal shading of the panel will occur when large bundles of instrumentation wires are muted off a

test article at any one point. In addition, convection losses can occur at the oven comers where the

instrumentation wires exit the oven. From Fig. 8 it is evident that convection losses and thermal shading

play a large part in affecting the overall panel temperature distribution.

Load alignment was monitored by checking strain gage outputs on skin-side cross sections near the

top, bottom, and center of the panel (Fig. 9). These strain distributions are on the skin-side of the panel

13



for an elevaled temperature (500 °F) test with load applied parallel (axially) to the hat stiffeners. The

strain magnitudes are shown normalized with respect to the absolute value of the largest slrain value

on the skin-siR of the panel. Figures 9(a) and (c), the top and bottom of the panel, show a noticeably

nonuniform strain distribution. These higher strain levels are a result of some of the bolts in the frames

starting to carry load before others. Also, uneven load in_oduction can occur because the frames are

not parallel or rigid. A more uniform strain distribution is seen at the center cross section of the panel

(Fig. 9(b)). The center panel strain distribution is not ideally uniform because the axially positioned

frames carry some of the load at the panel edges. However, the center of the panel was not significantly

affected by any nonuniform load introduced into the panel edges.

Normalized
strain

.25

0

-- .25

_.50

-- .75

m

0

I0

! ! I I I )
4 8 12 16 20 24

Distance, In.

(a) Top cross section.

g11179

Normalized
strain

.25

0

- .25

I ! I I I I
0 4 8 12 16 20 24

Distance, in. m,ao

Co) Center cross section.

Normalized
strain

.25 --

0 --

- .25 -

--,50

- .75 •
0

¢- i-<>

I ! ! I I I
4 8 12 16 20 24

Distance, In. 9111al

(c) Bottom cross section.

Figure 9. Normalized strain distributions at varying cross sections.
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Single-strain-gageF/S buckling load predictions were made at room temperature and at elevated

temperature equilibrium conditions. Figure 10(a) is a typical plot of strain as a function of load for the

case of axial loading at a steady-state equilibrium condition of 500 °F. The gage used for the plot is

located on the skin-side near the center of the panel and between the legs of a hat stiffener. The gage

response is nearly linear up to a certain load, after which bending is introduced and the gage responds

nonlinearly. The bending strain is determined by the difference between the extrapolation of a linear fit

through the linear range and the measured strain beyond the bending introduction point.

Strain,
IJ.In/In.

Linear
range

Measured strain
Linear extrapolation

I I I

ICompresslon load[, Ib

Maximum

bending

strain -7

%,
%,

! I I

911021

(a) Typical strain output as a function of load.

Figure 10. Buckling load prediction at an elevated temperature (500 °F) equilibrium condition with the

panel in the axial mode.

The bending strain is then used in the single-strain-gage F/S plot shown in Fig. 10(b). This plot

shows F/D plotted as a function of F, where D is the calculated bending strain of Fig. 10(a). The

lower limit of F/D values is reached as a result of experience gained from previous tests. The desire is

to get the F/D value as low as possible without buckling the panel to achieve a good prediction of the

critical buckling load. To obtain an accurate approximation of the critical buckling load, a fitted range

of the F/S curve needs to be selected. For this case a straight line was drawn through the fitted range

and the critical buckling load was predicted. Figure 10(b) does not provide the exact local buckling

load but this local prediction does provide an estimate of the general instability occurring in the panel.

A good estimate of the overall panel buckling load can be obtained by averaging local buckling load

predictions over an area of the panel away from the edges. The single-strain-gage method provides

a good understanding of the local behavior of the panel (load path and mode changes can be readily

observed) and is used to make real-time judgements of panel integrity [2].
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(b) Typical F/S plot.

Figure 10. Concluded.

Comparisons between test predictions and a finite-element buckling analysis performed by personnel

at the McDonnell Douglas Corp. are ongoing for the TMC panel. However, single-strain-gage F/S

predictions have been shown to correlate to within 10 percent of analysis for the thermal-mechanical

buckling tests performed on the Ti 6AI-4V monolithic hat-stiffened panel [2].

CONCLUDING REMARKS

A titanium matrix composite (TMC) hat-stiffened panel has been subjected to a series of nonde-

structive combined thermal equilibrium and mechanical loads to examine its buckling characteristics.

Test techniques were used to test the panel to 500 and 1200 °F. Mechanical loads were a_olied to

the panel using a 220-kip load frame system. Load alignment was optimized by shimming the top

_md bottom of the panel. Alignment was monitored in real time by checking strain gage outputs on

skin-side cross sections near the top, bottom, and center of the panel. The center of the panel away

from the edges was minimally affected by any nonuniform load introduction. A combined heated and

cooled platen was designed to prevent warping of the upper and lower loading platens and to provide

a near-uniform temperature distribution at the panel edges. High test temperatures were obtained by

using quartz lamp radiant heating arranged in a ceramic box oven enclosing the panel. Devi_ons

from a uniform temperature distribution occune_ because of convection losses at the oven comers and

thermal shading from instrumentation wires. A single-strain-gage force/stiffness method was used to

predict panel buckling loads. These predictions have been shown to correlate well with analysis for a

monolithic titanium panel which was tested in similar thermal-mechanical loading configurations as the

TMC panel. For the TMC hat-stiffened panel, comparisons between test predictions and a finite-element

buckling analysis are ongoing.
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